Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?
نویسندگان
چکیده
Metabolite or substrate channeling is a direct transfer of metabolites from one enzyme to the next enzyme in a cascade. Among many potential advantages of substrate channeling, acceleration of the total reaction rate is considered as one of the most important and self-evident. However, using a simple model, supported by stochastic simulations, we show that it is not always the case; particularly at long times (i.e. in steady state) and high substrate concentrations, a channeled reaction cannot be faster, and can even be slower, than the original non-channeled cascade reaction. In addition we show that increasing the degree of channeling may lead to an increase of the metabolite pool size. We substantiate that the main advantage of channeling likely lies in protecting metabolites from degradation or competing side reactions.
منابع مشابه
A model study of sequential enzyme reactions and electrostatic channeling.
We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of...
متن کاملSubstrate channeling and enzyme complexes for biotechnological applications.
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of su...
متن کاملSynergistic Degradation of a Hyperuricemia-Causing Metabolite Using One-Pot Enzyme-Nanozyme Cascade Reactions
Multi-enzyme cascade reactions are frequently found in living organisms, in particular when an intermediate should be eliminated. Recently, enzyme-mimic nanomaterials (nanozymes) received much attention for various applications, because they are usually more stable and cost-effective than enzymes. However, enzyme-nanozyme cascade reations have not been yet extensively exploited. Therefore, in t...
متن کاملDNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H2O2.
Enzymatic fuel cells have received considerable attention because of their potential for direct conversion of abundant raw materials such as cellulose to electricity. The use of multi-enzyme cascades is particularly attractive as they offer the possibility of achieving a series of complex reactions at higher efficiencies. Here we reported the use of a DNA-guided approach to assemble a five-comp...
متن کاملFunctional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.
We report a simple and low-cost strategy that allows the sequential and site-specific assembly of a dehydrogenase-based multi-enzyme cascade for methanol oxidation on the yeast surface using the high-affinity interactions between three orthogonal cohesin-dockerin pairs. The multi-enzyme cascade showed 5 times higher NADH production rate than the non-complexed enzyme mixture, a result of efficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017